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Abstract. We study the two-pion exchange potential at next-to–next-to-leading order in chiral effective
field theory. We propose a new cut-off scheme for the pion loop integrals based on spectral-function regular-
ization. We show that this method allows for a consistent implementation of constraints from pion-nucleon
scattering. It leads to a much improved description of the partial waves with angular momentum l ≥ 2 as
compared to the calculation utilizing dimensional regularization.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 21.30.-x Nuclear
forces – 12.39.Fe Chiral Lagrangians

1 Introduction

Effective field theory (EFT) has become a standard tool
for analyzing the chiral structure of quantum chromody-
namics (QCD) at low energies, where the perturbative ex-
pansion in powers of the coupling constant cannot be used.
The chiral symmetry of QCD is spontaneously broken and
the corresponding Goldstone bosons can be identified with
the pions, if one considers the two-flavor sector of the up
and down quarks as done here. It is a general property of
Goldstone bosons that their interactions become weak for
small momenta. Chiral perturbation theory (CHPT) is the
effective field theory of the standard model which allows
to describe the interactions of pions and between pions
and matter fields (nucleons, ρ-mesons, ∆-resonances, . . .)
in a systematic way. This is achieved via an expansion of
scattering amplitudes and transition currents in powers
of a low-momentum scale Q associated with small exter-
nal momenta and with the pion (light-quark) mass. Here,
small means with respect to the scale of chiral symmetry
breaking of the order of 1 GeV. Pion loops are naturally
incorporated and all corresponding ultraviolet divergences
can be absorbed at each fixed order in the chiral expan-
sion by counter terms of the most general chiral invariant
Lagrangian.
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This perturbative scheme works well in the pion and
pion-nucleon sector, where the interaction vanishes for
vanishing external momenta in the chiral limit; for some
early reviews see, e.g., [1–4]. The situation in the few-
nucleon sector is much more complicated. The main dif-
ficulty in the direct application of the standard methods
of CHPT to the two-nucleon (2N) system is due to the
non-perturbative aspects of the problem, the unnaturally
large S-wave scattering lengths and the shallow nuclear
bound states. One possible way to deal with this difficulty
has been suggested by Weinberg, who proposed to apply
CHPT to the kernel of the corresponding integral equa-
tion for the scattering amplitude, which can be viewed as
an effective nucleon-nucleon (NN) potential [5,6].

The first quantitative realization of the above idea has
been carried out by Ordóñez and co-workers, who de-
rived an (energy-dependent) NN potential and performed
a numerical analysis of the 2N system [7]. The energy-
independent representation of the chiral NN potential,
which can be applied much easier in few-nucleon cal-
culations, has been derived in [8–10]. At leading order
(LO) in the chiral expansion the potential is given by the
well-established one-pion exchange (OPE) and two con-
tact forces without derivatives. At next-to-leading order
(NLO) OPE gets renormalized and the leading two-pion
exchange (TPE) diagrams as well as seven more contact
operators appear. At NNLO, one has to include sublead-
ing TPE with one insertion of dimension two pion-nucleon
vertices (the corresponding low-energy constants (LECs)
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are denoted by c1,3,4, we adhere to the notation of ref. [3]).
Notice that no new contact forces contribute at this order.
While the pion exchanges are governed by the underlying
chiral symmetry, the contact forces represent our igno-
rance of the short-range physics and are not restricted by
chiral symmetry.

The LECs c1,3,4 enter the expressions for the pion-
nucleon (πN) scattering amplitude at subleading (Q2) and
higher orders and thus can be determined from the πN
data. From the Q2 analysis [11] one gets c1 = −0.64 , c3 =
−3.90 , c4 = 2.25 (here and in what follows the val-
ues of the ci’s are given in GeV−1). The values obtained
from various Q3 analyses [11–15] are in the ranges c1 =
−0.81 . . . − 1.53 , c3 = −4.70 . . . − 6.19 , c4 = 3.25 . . . 4.12.
These bands are also consistent with expectations from
resonance saturation [12]. Notice that the numerical val-
ues of c3 and c4 at both orders Q2 and Q3 are quite
large, which can be partially explained by the fact that
the LECs c3,4 are to a large extent saturated by the ∆-
excitation. This implies that a new and smaller scale,
namely m∆ − m ∼ 293 MeV, enters the values of these
constants in EFT without explicit ∆, see [12]. At fourth
order, these LECs get modified by quark-mass–dependent
contributions [16] and also are affected when electromag-
netic corrections are included [17]. These modifications go
beyond the accuracy of the calculations performed here
but should be kept in mind if one wants to go to higher
orders and/or systematically includes isospin violation.

The large numerical values of the ci’s lead to dramatic
consequences in few-nucleon systems [18]. The resulting
subleading TPE correction calculated using dimensional
regularization [9] (or equivalent schemes) turns out to be
very strong already at intermediate distances r ∼ 1–2 fm.
This could, in principle, be compensated by the corre-
sponding contact terms. However, such a compensation
at NNLO is only possible in low partial waves (i.e. in S-,
P -waves as well as for ε1) since the contact terms do not
contribute to D and higher partial waves at this order.
The D- and F -waves may therefore serve as a sensitive
test of chiral TPE exchange, as suggested by Kaiser et
al. in [9], since higher partial waves are strongly domi-
nated by OPE and less sensitive to TPE (as has long been
known; for an early non-perturbative approach see [19]).
The conventional scenario of nuclear forces represented by
existing OBE models and various phenomenological po-
tentials suggests that the D- and higher-partial-wave NN
interactions are weak enough to be treated perturbatively,
see [18]. Clearly, in such a framework one cannot describe
the low partial waves that show strong non-perturbative
effects. Under this assumption, Kaiser et al. [9] applied chi-
ral EFT to perform a parameter-free calculation for the
neutron-proton (np)D and higher partial waves and found
rather poor convergence of the chiral expansion already at
surprisingly low energies. While the LO and NLO predic-
tions, which correspond to OPE and to OPE accompanied
by the leading TPE corrections, already agree reasonably
well with the Nijmegen phase shift analysis [20] (NPSA),
taking into account subleading TPE at NNLO governed
by the LECs c1,3,4 destroys that agreement and leads to

strong deviations from the data for Elab > 50 MeV in
D-waves and for Elab > 150 MeV in F -waves.

In [21] we have demonstrated that the NNLO poten-
tial allows for a good description of the NN data, which is
also visibly improved compared to the NLO results. Con-
trary to ref. [9], we did not perform a perturbative ex-
pansion of the np T -matrix in high partial waves and cal-
culated phase shifts by solving the Lippmann-Schwinger
(LS) equation for the NN T -matrix. We found that tak-
ing the momentum space cut-off in the LS equation of the
order of 1 GeV allows for a satisfactory description of all
partial waves simultaneously. With such a large value of
the cut-off, the isoscalar central TPE potential becomes al-
ready so strongly attractive that unphysical deeply bound
states appear in the D and in the lower partial waves.
Note that although such deeply bound states do not in-
fluence NN observables at low energies, they might show
up in other processes (like, e.g., Nd [18] and πd [22] scat-
tering). Since the potential is very strong (and attractive)
and there are no counter terms according to the power
counting, changing the value of the cut-off clearly leads to
a strong variation of theD-wave phase shifts. Higher-order
counter terms are needed in order to reduce the cut-off de-
pendence of these observables and thus the problem with
the slow convergence of the chiral expansion remains.

Motivated by the known cancellation between the ππ
and πρ exchanges, which has been observed in boson ex-
change models of the nuclear force, we have constructed in
ref. [18] the NNLO* version of the NN potential without
spurious deeply bound states. To achieve that, we adopted
values of the LECs c3,4, which are much smaller in mag-
nitude than the ones obtained from πN scattering and re-
sult from subtracting the ∆ contribution and fine tuning
to NN observables: c3 = −1.15 GeV−1, c4 = 1.20 GeV−1.
This also allowed for a fairly good description of theD and
higher partial waves. Accounting for subleading TPE leads
to small corrections in most channels and the chiral expan-
sion for NN scattering seems to converge. Certainly, the
situation is still far from being satisfactory since the small
values of LECs c3,4 are not compatible with πN scattering.
Notice that the large values of these LECs are also sup-
ported by recent determinations from pp and np partial-
wave analysis performed by the Nijmegen group [23,24].

In the present work we explain the origin of the above-
mentioned problems and present a way to improve the
convergence of the chiral expansion for the NN interac-
tion. It allows to use the large values of ci’s consistent
with πN scattering. We argue that the unphysically strong
attraction in the isoscalar central part of chiral TPE at
NNLO resulting when calculated using dimensional (or
equivalent) regularization is due to high-momentum com-
ponents of exchanged pions, which cannot be properly
treated in an EFT. Using a cut-off regularization instead
of dimensional one and taking reasonable values for the
momentum space cut-off allows to remove spurious short-
distance physics associated with high-momentum interme-
diate states and to greatly improve the convergence of the
chiral expansion. A similar idea has already been used a
long time ago in the analysis of the octet baryon masses
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NLO:

NNLO:

Fig. 1. Chiral TPE at NLO and NNLO. Heavy dots denote
leading vertices from the chiral Lagrangian, while solid rectan-
gles correspond to subleading ones, which depend on the LECs
c1,3,4.

and the pion-nucleon sigma-term [25] and was recently
applied to improve the convergence of the SU(3) baryon
chiral perturbation theory [26–28]. A critical discussion
about the use of cut-off schemes is provided in ref. [29].
Notice further that a finite momentum space cut-off in chi-
ral loops has been used to derive the (energy-dependent)
expressions for TPE in ref. [7]. We also propose a sim-
ple and convenient way to derive analytic expressions for
regularized TPE in the momentum space based on the
spectral-function representation.

Our manuscript is organized as follows. In sect. 2 we
describe our formalism and present the explicit expres-
sions for regularized TPE. In sect. 3 we apply the formal-
ism to np D and higher partial waves and compare the
results with the ones obtained from dimensionally regular-
ized expressions. The summary and conclusions are given
in sect. 4.

2 Formalism

Energy-independent expressions for the chiral TPE at
NLO and NNLO have been derived using different for-
malisms in refs. [8–10]. The corresponding diagrams are
shown symbolically in fig. 1. The last diagram in the first
line (NLO) requires a special treatment in order to avoid
double counting of the iterated OPE. Notice further that
the first two graphs in the second line lead to vanishing
contributions to the NN force. The explicit time-ordered
expressions for the potential can be found in [10]. While
OPE is of the order (Q/Λχ)0, where Λχ refers to the chiral-
symmetry-breaking scale of the order of the ρ-meson mass,
TPE at NLO and NNLO provides corrections of orders
(Q/Λχ)2 and (Q/Λχ)3, respectively. In the present work
we will adopt the counting rule for the nucleon mass
m � Λχ, which is required for Weinberg’s power count-
ing to be consistent [5,7]. Therefore, we do not need to
include relativistic 1/m-corrections (1/m2-corrections) to
TPE (OPE) at the order considered. Notice that in the
one-nucleon sector m is usually treated on the same foot-
ing as Λχ. The same counting rule has also been used in

ref. [9]. The TPE contributions at NLO are given by

V NLO =
g2

A

(2Fπ)4
(τ 1 · τ 2)

∫
d3l

(2π)3

(
l 2 − q 2

)
ω+ω− (ω+ + ω−)

− 1
8(2Fπ)4
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2
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1
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×
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(
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)2

+6(σ2 · [q × l ])(σ1 · [q × l ])
}
, (2.1)

where σi and τi are the spin and isospin matrices of the
nucleon i, q is the nucleon momentum transfer and ω± =√
(q ± l)2 + 4M2

π . The subleading TPE potential reads

V NNLO =
3g2

A

16F 4
π

∫
d3l

(2π)3
l 2 − q 2

ω2−ω2
+

×
(
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We will show in the next section how these integrals can
be evaluated using different regularization schemes.

2.1 Dimensional versus cut-off regularization

The integrals in eqs. (2.1), (2.2) are ultraviolet divergent
and thus need to be regularized. Applying dimensional
regularization, the TPE potential takes the form [9]

VDR = VDR, non-pol. + VDR, pol. , (2.3)

where the non-polynomial and polynomial (in q) parts at
NLO V NLO

DR, non-pol. and V
NLO
DR, pol., respectively, read:

V NLO
DR, non-pol. = − τ 1 · τ 2

384π2F 4
π

L(q)
{
4M2

π(5g
4
A − 4g2

A − 1)

+q2(23g4
A − 10g2

A − 1) +
48g4

AM
4
π

4M2
π + q2

}

− 3g4
A

64π2F 4
π

L(q)
[
(σ1 · q ) (σ2 · q )

−(σ1 · σ2) q2
]
, (2.4)

V NLO
DR, pol. = (SDR

1 + SDR
2 q2) (τ 1 · τ 2)

+SDR
3

[
(σ1 · q ) (σ2 · q )− (σ1 · σ2) q2

]
.

Here, we have set q ≡ |q | and the logarithmic loop func-
tion L(q) is given by

L(q) =
ω

q
ln
ω + q

2Mπ
, ω =

√
q2 + 4M2

π . (2.5)
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Further,

SDR
1 =

1
384π2F 4

π

{
−18M2

π(5g
4
A − 2g2

A) ln
Mπ

µ
+ α1M

2
π

}
,

SDR
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1
384π2F 4

π
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(−23g4

A + 10g2
A + 1) ln

Mπ

µ
+ α2

}
,

SDR
3 = − 3g4

A

64π2F 4
π

{
ln
Mπ

µ
+ α3

}
, (2.6)

where µ is the scale of dimensional regularization and the
αi are polynomials in gA, whose precise form depends on
the choice of subtraction. The non-polynomial part as well
as all terms proportional to ln(Mπ/µ), which are due to
logarithmic divergences in eq. (2.1), are unique and do not
depend on the choice of subtraction. The µ-dependence of
the V NLO

DR, pol. is compensated by the corresponding NLO
counter terms of the form

V NLO
cont = C1(µ)M2

π (τ 1 · τ 2) + C2(µ) q2 (τ 1 · τ 2)
+C3(µ) (σ1 · q )(σ2 · q ) + C4(µ) q2 (σ1 · σ2) ,

(2.7)

and the resulting renormalized NN potential does not de-
pend on µ. Application of dimensional regularization to
nuclear potentials is also discussed in [30].

At NNLO one finds

V NNLO
DR, non-pol. = − 3g2

A

16πF 4
π
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2M2
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2
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×(2M2
π + q2)A(q)

− g2
A

32πF 4
π

c4(4M2
π + q2)A(q) (τ 1 · τ 2)

×
[
(σ1 · q )(σ2 · q )− q2(σ1 · σ2)

]
, (2.8)
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2 q2) + S̃DR
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×
[
(σ1 · q ) (σ2 · q )− (σ1 · σ2) q2
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with the loop function A(q),

A(q) =
1
2q
arctan

q

2Mπ
, (2.9)

and

S̃DR
1 = − 3g2

A

4πF 4
π

(c1 − c3)M3
π ,

S̃DR
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3g2
A

16πF 4
π
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S̃DR
3 = − g2

A

32πF 4
π

c4Mπ .

Notice that the integrals in eq. (2.2) are finite in dimen-
sional regularization.

Although dimensional regularization provides an easy
and convenient regularization scheme, it is by no means

the only possible one. One can equally well regularize the
divergent integrals in eqs. (2.1), (2.2) using a momentum
space cut-off, i.e. by multiplying the corresponding inte-
grands by the regulating function fΛ(l) ≡ fΛ(|l|), with the
properties fΛ(l)

l�Λ−→ 1, fΛ(l)
l�Λ−→ 0. This function fΛ(l)

should go to 0 for large l quick enough in order that the
regularized integrals exist. For cut-off regularized (CR)
TPE one finds, similar to eq. (2.3),

VCR = VCR, non-pol. + VCR, pol. , (2.11)

where

V NLO
CR, non-pol.

Λ→∞−→ V NLO
DR, non-pol. ,

V NNLO
CR, non-pol.

Λ→∞−→ V NNLO
DR, non-pol. . (2.12)

The polynomial pieces have the same structure as in
eqs. (2.4), (2.8), where the quantities SDR

i (S̃DR
i ) should

now be replaced by SCR
i (S̃CR

i ) given by
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}
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384π2F 4
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}
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ln
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1 = − 3g2

A
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(
(c1 − c3)M3

π + β2M
2
πΛ+ β3Λ

3
)
,

S̃CR
2 =

3g2
A

16πF 4
π

(
c3Mπ + β4Λ

)
, (2.14)

S̃CR
3 = − g2

A

32πF 4
π

(
c4Mπ + β5Λ

)
.

Here α′
i are polynomials in gA and βi are some combi-

nations of ci. The precise form of α′
i, βi depends on the

choice of the regulating function fΛ(l). For a finite value
of the cut-off Λ the function VCR, non-pol. in eq. (2.11) con-
tains, in general, not only non-polynomial terms in q but
also polynomial ones, which are however suppressed by
inverse powers of the cut-off Λ. The terms in eqs. (2.13),
(2.14) proportional to Λ, Λ2 and Λ3 correspond to linear,
quadratic and cubic divergences in eqs. (2.1), (2.2) and
are absent in the dimensionally regularized expressions.
Renormalization can be performed in very much the same
way as before by absorbing the terms proportional to Λ,
Λ2 and lnΛ by the counter terms. The only difference is
that we now need the LO counter terms in order to get rid
of the Λ2-term in eq. (2.13) at NLO and the Λ3-term in
eq. (2.14) at NNLO. In addition, NLO counter terms are
required to renormalize the NNLO TPE potential. Notice
that, since VCR, non-pol. depends on Λ, the renormalized
expressions for the potential using dimensional and cut-
off regularizations are only identical with each other for
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Λ → ∞. Does that mean that we should necessarily take
Λ→ ∞? The answer is no. This is because in an EFT one
is usually only able to calculate observables with a finite
accuracy performing calculations up to a certain order in
the low–momentum expansion. Taking Λ ∼ Λχ, the error
from keeping Λ finite is beyond the theoretical accuracy.
In other words, since

VCR, non-pol. = VDR, non-pol. +O(1/Λ) , (2.15)

the DR and CR expressions are identical up to higher-
order terms. At NNLO one should choose fΛ(l) in such a
way that V NLO

CR, non-pol. = V NLO
DR, non-pol. +O(1/Λ2).

2.2 Spectral-function representation

Before discussing implications of the choice of the regular-
ization scheme on the convergence of the chiral expansion,
we will show how cut-off regularization of the potential can
be understood in terms of the spectral-function represen-
tation. By their very nature, these spectral functions are
the most natural objects to separate the long- and short-
distance contributions to the NN potential in momentum
space. We will switch to the notation introduced in ref. [9]
and express V NLO, V NNLO as

V NLO = WC(q) (τ 1 · τ 2) + VS(q) (σ1 · σ2)
+VT (q) (σ1 · q ) (σ2 · q ) ,

V NNLO = VC(q) +WS(q) (τ 1 · τ 2) (σ1 · σ2)
+WT (q) (τ 1 · τ 2) (σ1 · q ) (σ2 · q ) . (2.16)

The functions Vi(q) (Wi(q)) correspond to isoscalar
(isovector) parts of the potential and can in case of di-
mensional regularization (and also for Λ → ∞) be read
off from eqs. (2.4), (2.8). The subscripts C, S and T stand
for the central, spin-spin and tensor contributions, in or-
der.

The functions Vi(q) (Wi(q)) can be represented (mod-
ulo terms polynomial in q2)1 by a continuous superposi-
tion of Yukawa functions [9,31]:

Vi(q) =
2
π

∫ ∞

2Mπ

dµµ
ρi(µ)
µ2 + q2

,

Wi(q) =
2
π

∫ ∞

2Mπ

dµµ
ηi(µ)
µ2 + q2

, (2.17)

where ρi(µ) and ηi(µ) are the corresponding mass spec-
tra (spectral functions). Note that subtracted dispersion
integrals should be used in eq. (2.17) if spectral func-
tions do not decrease for large µ. This usually happens
in the EFT calculations, where the spectral functions are
obtained within the low-µ expansion. Notice further that
subtraction constants can be absorbed by the LECs corre-
sponding to the short-range contact interactions and thus

1 In the present work we are only interested in the finite-
range part of the two-pion exchange, which is given by the
non-polynomial terms in momentum space.

do not introduce any additional ambiguity. It is easy to
see that ρi(µ) and ηi(µ) can be obtained from Vi(q) and
Wi(q) via

ρi(µ) = Im
[
Vi(0+ − iµ)

]
,

ηi(µ) = Im
[
Wi(0+ − iµ)

]
. (2.18)

These spectral functions contain the whole dynamics cor-
responding to the exchanged ππ system. Once ρi(µ), ηi(µ)
functions are determined, the TPE potential can easily be
obtained using eq. (2.17).

Let us now calculate the spectral function ρΛ
C(µ),

which results from the integral in eq. (2.2) regularized with
a cut-off Λ. We will choose the regulating function fΛ(l)
as fΛ(l) = θ(Λ − l). Performing integration over angles,
one obtains

V Λ
C (q) =

3g2
A

128π2F 4
π

∫ Λ

0

dl
l(l2 − q2)

q(l2 + q2 + 4M2
π)

×
(
8c1M2

π + c3 (l2 − q2)
)

(2.19)

×
[
ln

(
(l + q)2 + 4M2

π

)
− ln

(
(l − q)2 + 4M2

π

)]
.

One then finds for the spectral function

ρΛ
C(µ) = Im

[
V Λ

C (0
+ − iµ)

]

= − 3g2
A

64F 4
π

(
2M2

π(2c1 − c3) + c3µ
2
)
(2M2

π − µ2)

× 1
µ
θ(µ− 2Mπ) θ(

√
Λ2 + 4M2

π − µ) . (2.20)

The entire Λ-dependence is contained in the second Heav-
iside step function, which represents the only difference to
the DR expression. Thus, as one could expect for phys-
ical reasons, cutting off the momentum l of one of the
exchanged pions at l = Λ leads to a cut-off in the TPE
spectral functions, which, in this specific case, takes the
value

√
Λ2 + 4M2

π ∼ Λ. Clearly, the precise form of the
resulting regulator in the spectral-function representation
depends on the choice of fΛ(l). Similar relations between
the pion momentum and spectral-function cut-offs can be
obtained for other contributions to the NN potential as
well. Using the regularized spectral-function representa-
tion for TPE opens, therefore, an easy and convenient
way to obtain the CR expressions and will be adopted in
what follows. To be specific, we define the CR spectral
functions ρΛ

i (µ), η
Λ
i (µ) according to

ρΛ
i (µ) = ρi(µ) θ(Λ− µ) ,

ηΛ
i (µ) = ηi(µ) θ(Λ− µ) , (2.21)

where ρi(µ), ηi(µ) are the corresponding DR spectral func-
tions, see sect. 2.3. The non-polynomial parts of the TPE
potential at NLO and NNLO have then the same structure
as in eqs. (2.4), (2.8), where the loop functions L(q) and
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A(q) should be replaced by LΛ(q) and AΛ(q) defined as

LΛ(q) = θ(Λ− 2Mπ)
ω

2q
ln
Λ2ω2 + q2s2 + 2Λqωs

4M2
π(Λ2 + q2)

,

s =
√
Λ2 − 4M2

π ,

AΛ(q) = θ(Λ− 2Mπ)
1
2q

arctan
q(Λ− 2Mπ)
q2 + 2ΛMπ

. (2.22)

Several comments are in order. First of all we note that
for 2Mπ < Λ the CR and DR expressions VCR and VDR

only differ from each other by higher-order contact inter-
actions (i.e. by short-range terms) if VCR is expanded in
powers of 1/Λ. One can therefore use this regularization
prescription in calculations at any given order in the low-
momentum expansion without getting into trouble with
spurious long-range contributions suppressed by inverse
powers of Λ which might arise for a different choice of the
cut-off function. Further, one should keep in mind that
our choice of regularization is by no means unique. Differ-
ent choices lead to equivalent results for the potential (up
to higher-order terms) and may be used as well. Finally,
we would like to point out that the spectral-function
representation (2.17) does not allow to properly reproduce
terms, which are polynomial in q2 and non-analytic inM2

π .
Such terms are not important for our present work since
we do not consider variation in Mπ. If one is interested in
the Mπ-dependence of the nuclear force, see, for instance,
ref. [32], a cut-off regularization should be performed
at the level of divergent integrals in eqs. (2.1) and (2.2)
rather than in the spectral-function representation.

2.3 Coordinate space representation

The coordinate space representations ṼC,S,T (r)
(W̃C,S,T (r)) of the isoscalar (isovector) central, spin-spin
and tensor parts of the potential VC,S,T (q) (WC,S,T (q))
are defined according to

Ṽ (r) = ṼC(r) + W̃C(r) (τ 1 · τ 2)

+
(
ṼS(r) + W̃S(r) (τ 1 · τ 2)

)
(σ1 · σ2)

+
(
ṼT (r) + W̃T (r) (τ 1 · τ 2)

)
×(3σ1 · r̂ σ2 · r̂ − σ1 · σ2) . (2.23)

The functions ṼC,S,T (r) can be obtained for any given
r > 0 from the corresponding spectral functions via

ṼC(r) =
1

2π2r

∫ ∞

2Mπ

dµµ e−µr ρC(µ) , (2.24)

ṼT (r) = − 1
6π2r3

∫ ∞

2Mπ

dµµ e−µr (3 + 3µr + µ2r2)ρT (µ) ,

(2.25)

ṼS(r) = − 1
6π2r

∫ ∞

2Mπ

dµµ e−µr
(
µ2ρT (µ)− 3ρS(µ)

)
.

(2.26)
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Fig. 2. The (normalized) integrand I(µ) in eq. (2.24) for dif-
ferent distances r.

The coordinate space representation of the isovector parts
is given by the above equations replacing ṼC,S,T (r) →
W̃C,S,T (r) and ρC,S,T (µ)→ ηC,S,T (µ).

We will now consider the coordinate space represen-
tation of the CR TPE potential. According to the defini-
tion (2.21), eqs. (2.4), (2.8) and (2.18), we obtain for the
CR spectral functions at NLO

ηΛ
C(µ) =

1
768πF 4

π

{
4M2

π(5g
4
A − 4g2

A − 1)

−µ2(23g4
A − 10g2

A − 1) +
48g4

AM
4
π

4M2
π − µ2

}

×
√
µ2 − 4M2

π

µ
θ(Λ− µ) , (2.27)

ρΛ
T (µ) =

1
µ2

ρΛ
S (µ) =

3g4
A

128πF 4
π

√
µ2 − 4M2

π

µ
θ(Λ− µ) ,

and at NNLO

ρΛ
C(µ) = − 3g2

A

64F 4
π

(
2M2

π(2c1 − c3) + c3µ
2
)

×(2M2
π − µ2)

1
µ
θ(µ− 2Mπ) θ(Λ− µ) ,

ηΛ
T (µ) =

1
µ2

ηΛ
S (µ) = − g2

A

128F 4
π

c4(4M2
π − µ2)

× 1
µ
θ(µ− 2Mπ) θ(Λ− µ) . (2.28)

We are now in the position to discuss implications of
keeping the momentum space cut-off Λ in the above ex-
pressions for the spectral functions finite. Let us consider,
for example, the isoscalar central part of the TPE. In fig. 2
we show the (normalized) integrand I(µ) in eq. (2.24) as
a function of µ for r = 1

2M
−1
π , r = M−1

π , r = 2M−1
π and

for Λ → ∞. For the LECs c1,3 we use the values [15]:
c1 = −0.81 GeV−1, c3 = −4.7 GeV−1. As expected, at
large distances r ≥ 2M−1

π the integral in eq. (2.24) is dom-
inated by low-µ components in the spectrum, where the
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chiral expansion for the spectral function is well behaved.
However, at intermediate distances r ∼ 1/Mπ ∼ 1.4 fm
the dominant contribution to the integral comes already
from the region µ ∼ 0.6 GeV, where only a very slow (if
at all) convergence of the chiral expansion for ρ(µ) is ex-
pected. Certainly, at even shorter distances the resulting
TPE potential is completely determined by the region of
large µ, where the spectral function is not properly de-
scribed in chiral EFT. It is then clear that setting the
upper limit of the integral in eq. (2.24) to infinity, which
corresponds to the DR result, leads to inclusion of spuri-
ous short-range physics in the TPE potential. We stress
again that this problem solely arises because at the order
we are working there are no contact terms which normally
would absorb these contributions. On the other hand, in-
troducing a finite cut-off Λ in the spectral-function rep-
resentation according to eq. (2.21), we explicitly exclude
all short-range components (i.e. those ones with the range
R < Λ−1) from the TPE potential, which are still present
in the DR expression. The procedure is legitimate and
does not lead to any ambiguity if Λ is chosen to be of the
order of (or larger than) Λχ ∼Mρ, which provides a natu-
ral scale for the effective field theory. Various choices for Λ
lead to exactly the same result for low-energy observables
provided one keeps terms in all orders in the EFT expan-
sion. Choosing a specific value for Λ in the calculation
at any finite order in the low-momentum expansion one
implicitly makes a particular choice for the combination
of the higher-order contact terms. There are obviously no
restrictions in choosing Λ if all LECs are of the natural
size and the expansion parameter in EFT is small. Both
dimensional and cut-off regularizations lead to similar re-
sults and the unphysical short-range components of TPE
resulting from keeping Λ very large (or even ∞) are com-
pensated by corresponding counter terms to the order at
which one is working. In fact, as we will show in the next
section, the NN potential at NLO may serve as an example
of such a situation.

In certain cases, however, it appears to be advan-
tageous to explicitly remove the spurious short-distance
physics when calculating chiral loops. This happens, for
instance, in SU(3) baryon chiral perturbation theory,
where a much slower convergence of the chiral expan-
sion is expected due to the relatively large mass of the
strange quark. The leading non-analytic components from
loop corrections calculated using dimensional regulariza-
tion in some cases seem to destroy the good agreement
of the lowest-order calculation with data (like, e.g., the
Gell-Mann–Okubo relation for the baryon masses). Of
course, this disagreement is corrected after inclusion of
higher-order contributions. However, the chiral expansion
seems not to behave well and no clear convergence can
be observed to the orders yet calculated (such a state-
ment holds, e.g., for the baryon masses [33] but not for
the baryon magnetic moments [34,35]). Reformulating chi-
ral EFT using a finite cut-off regularization allows to re-
move the spurious short-distance physics and to improve
the convergence [26–28], if the cut-off procedure is imple-
mented model independently (as shown in ref. [29]).

As discussed in the introduction, slow convergence of
the chiral series for the NN interaction is observed if one
uses the values for the LECs c1,3,4 obtained in πN scatter-
ing. The numerically large values of c3,4 lead to a strong
and attractive TPE at NNLO. Strong deviations from the
NPSA results are observed in the D- and F -waves which
are parameter free at this order and are still sensitive to
the TPE contribution. We will demonstrate in the next
section that the problems with the convergence are not
due to the large values of c3,4 which provide a proper long-
range part of TPE [23,24], but rather due to unphysical
short-range components in the DR expressions for the po-
tential, which can (and should) be avoided using the CR.

To close this section we will give analytical expressions
for TPE in the coordinate space. For the NNLO contribu-
tions one finds

Ṽ Λ
C (r) =

3g2
A

32π2F 4
π

e−2x

r6

[
2c1 x2(1 + x2)2

+c3(6 + 12x+ 10x2 + 4x3 + x4)
]

− 3g2
A

128π2F 4
π

e−y

r6

[
4c1x2

(
2 + y(2 + y)− 2x2

)

+c3
(
24 + y(24 + 12y + 4y2 + y3)

−4x2(2 + 2y + y2) + 4x4
)]

, (2.29)

W̃Λ
T (r) = − g2

A

48π2F 4
π

e−2x

r6
c4 (1 + x)(3 + 3x+ x2)

+
g2

A

768π2F 4
π

e−y

r6
c4

(
48 + 48y + 24y2 + 7y3 + y4

−4x2(8 + 5y + y2)
)
, (2.30)

W̃Λ
S (r) =

g2
A

48π2F 4
π

e−2x

r6
c4 (1 + x)(3 + 3x+ 2x2)

− g2
A

384π2F 4
π

e−y

r6
c4

(
24 + 24y + 12y2 + 4y3 + y4

−4x2(2 + 2y + y2)
)
, (2.31)

with the abbreviations x = Mπr, y = Λr. For the
NLO contributions we could not perform integrations in
eqs. (2.24)-(2.26) analytically. In the chiral limit (Mπ = 0)
the results take, however, the following simple form:

W̃Λ
C (r)

∣∣∣∣
Mπ=0

=
23g4

A − 10g2
A − 1

1536π3F 4
πr

5

×
[
− 6+ e−y(6 + 6y+3y2+y3)

]
, (2.32)

Ṽ Λ
T (r)

∣∣∣∣
Mπ=0

=
g4

A

256π3F 4
πr

5

×
[
−15+e−y(15+15y+6y2+y3)

]
, (2.33)
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Fig. 3. The isoscalar central TPE potential at NNLO in r-
space. The solid line shows the DR result corresponding to
Λ = ∞, while the shaded band results from varying Λ be-
tween 500 and 800 MeV. The short- (long-) dashed line shows
the phenomenological σ (σ + ω + ρ) contributions based on
the isospin triplet configuration space version (OBEPR) of the
Bonn potential [36].

Ṽ Λ
S (r)

∣∣∣∣
Mπ=0

=
g4

A

128π3F 4
πr

5

×
[
6−e−y(6 + 6y+3y2+y3)

]
. (2.34)

Certainly, the large-distance asymptotical behavior of the
potential is unaffected by the cut-off procedure, provided
that Λ � Mπ. In fig. 3 we compare the isoscalar central
part of TPE obtained using CR and DR. The strongest ef-
fects of the cut-off are observed at intermediate (∼M−1

π )
and smaller distances, where TPE becomes unphysically
attractive if DR is used. In contrast, removing the large
components in the mass spectrum of the TPE with the
reasonably chosen cut-off Λ = 500–800 MeV greatly re-
duces this unphysical attraction and the resulting poten-
tial is of the same order in magnitude as the one obtained
in phenomenological boson exchange models. It remains to
say that the CR expressions for the TPE are still not reg-
ular in the origin, although the short-distance behavior is
milder than in the case of DR and the leading singularities

at r = 0 are removed. For example, while ṼC(r) ∝ 1/r6,
Ṽ Λ

C (r) ∝ 1/r5 for r → 0. The Schrödinger (or LS) equa-
tion has still to be regularized by the introduction of an
additional cut-off.

3 Chiral TPE at NNLO and peripheral NN
scattering

In this section we will apply the OPE and TPE nuclear
force at NNLO, calculated using the cut-off regularization
as described in the previous section, to NN phase shifts
with orbital angular momentum l ≥ 2 and to mixing an-
gles with j ≥ 2. As already pointed out in the introduc-
tion, no contact terms contribute at NNLO to the scat-
tering amplitude in these channels. Consequently, such pe-
ripheral phase shifts are entirely determined by the long-
range part of the nuclear force and thus provide a sensitive
test of the chiral TPE. The OPE potential at NLO (and
NNLO) is given by

VOPE = − g2
A

4F 2
π

(
1− 4M2

π

gA
d18

)
τ 1 · τ 2

(σ1 · q )(σ2 · q )
q2 +M2

π

,

(3.1)
where the LEC d18 is related to the Goldberger-Treiman
discrepancy via

gπN

m
=
gA

Fπ

(
1− 2M2

π

gA
d18

)
. (3.2)

In what follows we use gA = 1.26, Fπ = 92.4 MeV, d18 =
−0.97 GeV−2, which leads to gπN � 13.2. For TPE at
NLO and NNLO we use eqs. (2.4), (2.8) with the functions
L(q), A(q) replaced by LΛ(q), AΛ(q) defined in eq. (2.22).
For the ci’s we adopt the values [15]: c1 = −0.81 GeV−1,
c3 = −4.70 GeV−1, c4 = 3.40 GeV−1.

The explicit expressions for the partial-wave decompo-
sition of the potential can be found in ref. [21]. The partial-
wave projected Lippmann-Schwinger (LS) equation for the
NN T -matrix reads

T sj
l, l′(p

′, p) = V sj
l, l′(p

′, p) +
∑
l′′

∫
d3p′′

(2π)3
V sj

l, l′′(p
′, p′′)

× m

p 2 − (p′′)2 + iε
T sj

l′′, l′(p
′′, p) , (3.3)

where the on-shell S- and T–matrices are related via

Ssj
l, l′(p, p) = δl l′ 1sj − i

8π2
pmT sj

l, l′(p, p) . (3.4)

Since the chiral potential grows at large momenta, the
LS equation (3.3) has to be regularized2, which requires
the introduction of an additional cut-off (which can be
done consistently with the CR discussed so far). It is com-
monly believed (and observed in various boson exchange

2 This regularization of the LS equation should not be con-
fused with the CR of the chiral loops discussed in previous
sections.
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Fig. 4. D-wave NN phase shifts and mixing angle ε2 versus the nucleon laboratory energy. The dotted curve is the LO result
(i.e. pure OPE), while the dashed (solid) curve refers to NLO (NNLO) results for OPE+TPE with the potential calculated
using dimensional regularization. The light (dark) shaded band shows the NLO (NNLO) predictions with chiral TPE obtained
using the cut-off regularization with Λ = 500–800 MeV. The filled circles depict the Nijmegen PSA results [37].

and phenomenological potential models, see also ref. [18])
that because of the centrifugal barrier, the NN interaction
in the peripheral partial waves becomes weak enough to
be treated perturbatively. This is also confirmed by the
smallness of the corresponding phase shifts. To calculate
phase shifts in high partial waves one may therefore use
the Born approximation to the T -matrix3:

T sj
l, l′(p

′, p) ∼ V sj
l, l′(p

′, p) . (3.5)

3 Notice, however, that the weakness of the NN interaction
for high values of l is not related to the chiral expansion and
does not follow from the power counting.

Such a procedure, which is analogous to the one of refs. [9,
38], allows to avoid the introduction of an additional
cut-off in the LS equation and will be adopted in the
present work. One should, however, always keep in mind
that this approximation breaks down if the phase shifts
become large.

Before presenting our predictions for the high partial
waves, we would like to specify the differences between our
analysis and the one of Kaiser et al. [9]:

– First of all, we strictly follow the lines of Weinberg’s
power counting and do not include relativistic correc-
tions to the nuclear force at NNLO, which have been
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Fig. 5. F -wave NN phase shifts and mixing angle ε3 versus the nucleon laboratory energy. For notations see fig. 4.

included in ref. [9]. In contrast to this reference, we
use non-relativistic kinematics when calculating phase
shifts.

– We also do not include the contribution from once it-
erated OPE, which turns out to be numerically small
in most channels. From the point of view of the power
counting, there is no reason to include once iterated
OPE and not to include two, three, . . . times iterated
OPE.

– We use slightly different (and more modern) values for
the LECs c1,3,4 and for gA.

– The last and most important difference is that we use
the finite cut-off Λ to regularize chiral-loop integrals.
This is in strong contrast with the analysis of ref. [9],
where DR corresponding to Λ =∞ has been adopted.

As is clear from the above discussion, optimal val-
ues for the cut-off are those close to the scale where
the EFT description becomes inaccurate. Taking a too
small Λ will remove the truly long-distance physics,
while too large values for the cut-off may affect the
convergence of the EFT expansion due to inclusion of
spurious short-distance physics. We will therefore vary
Λ in the range Λ = 500–800 MeV which appears to
be physically reasonable and matches well with both
Mρ and the cut-off used in the LS equation for NN
scattering [18].

Let us start with theD-waves which are shown in fig. 4.
The LO result represented by pure OPE already provides a
good approximation to the phase shifts in the 3D1 and 3D2



E. Epelbaum et al.: Improving the convergence of the chiral expansion for nuclear forces - I: Peripheral phases 135

0 100 200 300

Lab. Energy  [MeV]

0

0. 5

1

1. 5

2
Ph

as
e 

Sh
if

t  
[d

eg
]

1 G4

0 100 200 300

Lab. Energy  [MeV]

-4

-3

-2

-1

0

Ph
as

e 
Sh

if
t  

[d
eg

]

3 G3

0 100 200 300

Lab. Energy  [MeV]

0

2

4

6

8

Ph
as

e 
Sh

if
t  

[d
eg

]

3 G4

0 100 200 300

Lab. Energy  [MeV]

-2

-1.5

-1

-0.5

0

Ph
as

e 
Sh

if
t  

[d
eg

]

3 G5

0 100 200 300

Lab. Energy  [MeV]

-1.5

-1

-0.5

0

M
ix

in
g 

A
ng

le
  [

de
g]

ε4

Fig. 6. G-wave NN phase shifts and mixing angle ε4 versus the nucleon laboratory energy. For notations see fig. 4.

partial waves and to the mixing angle ε2. It is too weak in
the 1D2 channel and does not describe properly the 3D3

phase shift. The latter appears to be quite small (|δ| ∼
4.6◦ at Elab = 300 MeV) compared to the other D-wave
phase shifts (|δ| ∼ 9.7◦–25.5◦). The reason is that partial-
wave projected OPE, taken on the energy shell, is strongly
suppressed in this channel. Consequently, the 3D3 phase
shift is quite sensitive to TPE but also to the iteration of
the potential which we neglect in the present analysis.

The NLO predictions obtained using dimensional reg-
ularization are shown by the dashed curves. One observes
a visible improvement for the 1D2 phase shift and for ε2,
while the NLO corrections go in the wrong direction in
the 3D1 and 3D3 channels. The NNLO predictions calcu-
lated with dimensional regularization are depicted by the

solid lines. The good agreement with the data observed
at LO and NLO is destroyed in all partial waves for en-
ergies Elab > 50 MeV and the chiral expansion does not
seem to converge. Note that at N3LO one independent
contact operator contributes to each D-wave so that the
agreement with the data will presumably be restored, see
also ref. [21] for a related discussion. Note that the results
presented here are parameter free and are very similar to
the ones of ref. [9]. No breakdown of the chiral expansion
at NNLO is observed using the CR in the chiral loops and
choosing Λ = 500–800 MeV. This proves explicitly that
strong disagreement with the data resulting from chiral
TPE at NNLO is due to unphysical short-distance com-
ponents, which are kept in the DR expressions for the po-
tential. The use of a momentum space cut-off keeps only
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the long-distance portion of the chiral loops and leads to a
greatly improved behavior. Our predictions agree with the
data in the 1D2 and 3D1 channels and go into the right
direction in the 3D3 partial wave and for ε2. Note that the
uncertainty due to the variation of Λ is quite significant
at higher energies. The NLO bands are narrower than the
NNLO ones as a consequence of the fact that the leading
TPE contribution is numerically quite small.

Our predictions for the F -wave phase shifts and for ε3
are presented in fig. 5. Although the situation with DR
subleading TPE is not as dramatic as for D-waves, a too
strong attraction is clearly visible in the 3F2, 3F3 and 3F4

partial waves. Removing the short-distance components of
TPE with the cut-off regularization leads to a significant
improvement in the 3F3 and 3F4 channels, while additional
repulsion is still missing in the 3F2 partial wave.

For the G (fig. 6) and higher partial waves we observe
very similar results for both DR and CR TPE and the
phase shifts are essentially given by OPE. Notice that ad-
ditional attraction is generated from iterated OPE in the
3G5 partial wave [9], which is not included in the present
work. Therefore, the strong disagreement with the data
in this channel is presumably just an artefact of the Born
approximation.

Finally, we would like to point out that the typical un-
certainty of ∼ 30% observed in our NNLO predictions at
Elab = 300 MeV is consistent with the power counting.
Indeed, the N3LO counter terms are expected to provide
corrections to the S-matrix of the order Q4/Λ4

χ. Taking
Q ∼ 375 MeV, which corresponds to Elab = 300 MeV,
and identifying Λχ with the smallest value used for the
cut-off Λ, i.e. Λ = 500 MeV, one estimates the N3LO
effects as ∼ 32%. As already stated before, the uncer-
tainty is larger in the cases where phase shifts are numer-
ically small (as, for instance, in the 1D2, 3D3, 3G5 partial
waves). Although the following remark is quite obvious,
we stress that a two-nucleon potential based on a system-
atic EFT approach should not be fine-tuned to fulfill a
χ2/d.o.f. � 1, as is done in more conventional approaches.
This does, however, not mean that such a precision cannot
be reached.

4 Summary and conclusions

In this paper we have considered the two-nucleon poten-
tial in chiral effective field theory, making use of a novel
method of regularizing the pion loop integrals. For that,
we have considered the spectral functions obtained from
the NLO and NNLO TPE contributions and argued that
only masses below the chiral-symmetry-breaking scale
should contribute in the loop integrals. This can be easily
implemented by applying a cut-off to the spectral func-
tions. Varying the cut-off between 500 and 800 MeV (as
given by the mass of the heaviest Goldstone boson, the
eta, and the mass of the lightest resonance, the rho), we
find the following pertinent results:

1) From the regularized spectral functions, we have con-
structed the coordinate space representations of the

various components of the NN potential. The isoscalar
central TPE shown in fig. 3 agrees with phenomeno-
logical potentials. The strong unphysical attraction of
the TPE is a short-range phenomenon which is sup-
pressed in CR by choosing Λ ≤ Mρ, whereas in the
Bonn potential πρ exchange cancels the strong attrac-
tive TPE, which is one particular model for this kind
of short-range physics.

2) We have considered the peripheral partial waves
(l ≥ 2), because at NNLO, these are given entirely by
OPE and TPE with no free parameters. We have cal-
culated these phases in the Born approximation which
should be legitimate at least for the D and higher
waves, see ref. [18] for more discussion. The uncer-
tainty in most D- and F -waves at NNLO is still size-
able even with the finite cut-off. This has to be ex-
pected because of the large values of ci’s. The re-
sults for D- and F -waves are still not completely con-
verged at NNLO, but the error of about 10 (1)◦ at
Elab = 300 MeV for the D (F ) waves appears reason-
able. There is no breakdown of the chiral expansion
for D-waves beyond Tlab = 50 MeV and for F -waves
beyond Tlab = 150 MeV, as found in ref. [9] using di-
mensional regularization.

3) It is no surprise that the NNLO TPE gives larger cor-
rections than the NLO one because of the delta contri-
butions subsumed in the LECs c3 and c4. One might
therefore contemplate including ∆(1232) explicitly in
the effective Lagrangian (see, e.g., [7]), because in such
a theory most (but not all!) of the NNLO effects are
shifted to NLO, provided that a systematic analysis of
pion-nucleon scattering in such a scheme is available
(for attempts see, e.g., [39–41]). However, for obtain-
ing a precise potential one still would have to go to
NNLO, which is considerably more complicated than
in the pion-nucleon EFT, as witnessed by the fact that
no complete fourth-order calculation with deltas in the
single-nucleon sector exists.

4) We stress that dimensional regularization is by no
means ruled out by such considerations. In general,
for quickly converging expansions, it should be the
method of choice. If, however, the convergence for some
well-understood physical reason is slow and (some) ob-
servables become sensitive to spurious short-distance
physics kept in DR, it might be preferable to use CR, as
done here. In our case, the LECs c3,4 are large. Choos-
ing DR, one generates a series of higher-order contact
interactions, which are ∝ c3,4 and therefore large. The
D- and F -waves are certainly most sensitive to such
contact interactions and are thus strongly affected.

5) The cut-off used here is not a form factor and is
not related to the finite extension of the nucleon.
Obviously, the precise shape of the regulating function
and the precise value of Λ are not important (as long
as the value for Λ is well above the two-pion threshold,
Λ > 2Mπ and below the scale of chiral symmetry
breaking, Λ < Λχ ).

In a subsequent publication, we will apply CR to the
low partial waves in the non-perturbative regime, where
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we have to solve the regularized Lippmann-Schwinger
equation (3.3) to generate the bound and scattering states.
It can be demonstrated that there are no deeply bound
states and low-energy observables are not affected by CR.
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7. C. Ordóñez, L. Ray, U. van Kolck, Phys. Rev. C 53, 2086

(1996).
8. J.L. Friar, S.A. Coon, Phys. Rev. C 49, 1272 (1994).
9. N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625,

758 (1997).
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